Linear manifold modeling of multivariate functional data

نویسندگان

  • Jeng-Min Chiou
  • Hans-Georg Müller
چکیده

Multivariate functional data are increasingly encountered in data analysis, while statistical models for such data are not well developed yet. Motivated by a case study where one aims to quantify the relationship between various longitudinally recorded behavior intensities for Drosophila flies, we propose a functional linear manifold model. This model reflects the functional dependency between the components of multivariate random processes and is defined through data-determined linear combinations of the multivariate component trajectories, which are characterized by a set of varying coefficient functions. The time-varying linear relationships that govern the components of multivariate random functions yield insights about the underlying processes and also lead to noisereduced representations of the multivariate component trajectories. The proposed functional linear manifold model is put to the task for an analysis of longitudinally observed behavioral patterns of flying, feeding, walking and resting over the lifespan of Drosophila flies and is also investigated in simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems

In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...

متن کامل

Fisher’s Linear Discriminant Analysis for Weather Data by reproducing kernel Hilbert spaces framework

Recently with science and technology development, data with functional nature are easy to collect. Hence, statistical analysis of such data is of great importance. Similar to multivariate analysis, linear combinations of random variables have a key role in functional analysis. The role of Theory of Reproducing Kernel Hilbert Spaces is very important in this content. In this paper we study a gen...

متن کامل

Functional Modeling of Iranian Precipitation Based on Temperature and Humidity

Functional Data Analysis (FDA) has recently made considerable progress because of easier access to the data that are essentially in the form of curves. Modeling of Iranian precipitation based on temperature and humidity with continuous the essential nature of such phenomena that are continuous functions of time has not been done properly. The corresponding data are generally collected daily or ...

متن کامل

Parametric Representations for Nonlinear Modeling of Visual Data

Accurate characterization of data distribution is of significant importance for vision problems. In many situations, multivariate visual data often spread into a nonlinear manifold in the high-dimensional space, which makes traditional linear modeling techniques ineffective. This paper proposes a generic nonlinear modeling scheme based on parametric data representations. We build a compact repr...

متن کامل

Application of non-linear regression and soft computing techniques for modeling process of pollutant adsorption from industrial wastewaters

The process of pollutant adsorption from industrial wastewaters is a multivariate problem. This process is affected by many factors including the contact time (T), pH, adsorbent weight (m), and solution concentration (ppm). The main target of this work is to model and evaluate the process of pollutant adsorption from industrial wastewaters using the non-linear multivariate regression and intell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013